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Acrolein gas was spontaneously entrapped in supercages of
NaY zeolite and the sorption was confirmed by solid 13CMAS
NMR spectra. In the confined cavities, acrolein smoothly under-
went conjugate addition with electron-rich aromatics such as in-
doles and anisole.

Sorption of organic molecules in zeolite has been studied in
order to demonstrate their behavior in the cavities and the avail-
ability of the zeolite cavities for reaction media which induce se-
lective organic reactions. For instance, labile, polar formalde-
hyde was sorbed and preserved in NaY zeolite cavities as a
monomer form for a long period even at ambient temperatures,
and underwent prompt carbonyl-ene reactions with various ole-
fins.1 Similarly, non-polar aromatics such as benzene were en-
capsulated in supercages of NaY.2 We also reported that 1,3-cy-
clopentadiene was trapped in NaY and that the cyclopentadiene
which was highly condensed in the zeolite cavities showed en-
hanced Diels–Alder reactivity toward typical dienophiles.3

Here we describe sorption of acrolein in zeolite, and the fac-
ile Friedel–Crafts-type alkylations of electron-rich aromatics
with acrolein. Acrolein has a great potential as a C3 source in or-
ganic synthesis, but is often a troublesome reagent to handle ow-
ing to a tendency to prompt dimerization or polymerization.4

The Friedel–Crafts alkylations have been widely employed in
C–C bond formations.5 If 1,4-addition of aromatics to acrolein
selectively proceeds without concurrent 1,2-addtion, the Frie-
del–Crafts-type alkylation becomes a promising synthetic strat-
egy to produce aromatics with a terminally-functionalized C3
side-chain.6 Denhart and co-workers reported the Friedel–Crafts
alkylation of substituted indoles with acrolein by using an imini-
um catalyst.7 In their study, both a reactant, acrolein, and a prod-
uct, alkylated indole, were not so stable in the presence of tri-
fluoroacetic acid that satisfactory yields and purity were not ob-
tained.

In the present study, as a sorbent and catalyst we used not
only NaX, NaY, and HY zeolites, but also silica as a control sup-
port.8 Acrolein vapor in an N2 flow was passed over a well-dried
support at 273K. When 3.6mmol of acrolein was sorbed into
one gram of NaY, which was referred to as acrolein(3.6)@NaY,
the sorption was saturated. On the other hand, one gram of silica
only accommodated 1.6mmol of acrolein (acrolein(1.6)@SiO2).
With evacuation treatment on acrolein(1.6)@SiO2 under 67 Pa
for 1 h, the sorbed acrolein was completely lost. In contrast, no
loss of acrolein was observed with acrolein(3.6)@NaY under
the same evacuation conditions, suggesting that acrolein has
strong interaction with sodium ions in NaY.

In the solid 13CMAS NMR9 and liquid 13CNMR spectra of
acrolein(3.6)@NaY, acrolein(1.6)@SiO2 and acrolein in CDCl3,

three sharp peaks were observed in the range of � 130–210 ppm
on each spectrum, respectively (Figure 1).10 From the spectra of
acrolein(3.6)@NaY and acrolein(1.6)@SiO2, it was confirmed
that the sorbed acrolein molecules were present as a monomer.
The different chemical shifts of a formyl carbon at � 202 ppm
on NaY and 200 ppm on silica envisaged that the sorbed acro-
leins were differently activated on each porous support.

The reaction of acolein(3.0)@NaY with indole proceeded in
CH2Cl2 at room temperature to give 3-(1H-indol-3-yl)propanal
(2) in 58% yield in an exclusive 1,4-fashion (Table 1, Entry 1).
Interestingly, the addition of acrolein to a mixture of unsorbed
NaY and indole in CH2Cl2 was found to produce 2 in almost
the same yield (Entry 2). This is because more polar acrolein
can be trapped into NaY in preference to indole in a CH2Cl2 so-
lution. Thereafter, in the other experiments in Table 1, we adopt-
ed this simpler reaction procedure to omit the pre-sorption of ac-
rolein into supports.

NaY zeolite-catalyzed addition gave the best result among
the catalysts, though silica showed moderate catalysis. In the
presence of strong acid catalysts such as HY and BF3.OEt2, in-
dole rapidly disappeared, but 2 was not detected due to instabil-
ity of 1 and 2 in such acidic circumstances. When the addition
was carried out using NaX which has the same porous frame-
work but a different Si/Al ratio from that of NaY, the reaction
gave poor results with only 20% yield.

Substituted indoles also yielded the corresponding adducts
in moderate to good yields depending on substituents (Table 2).
5-Chloroindole with an electron-withdrawing chlorine atom
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Figure 1. 13CNMR spectra of sorbed acrolein. (a) acrolein in
CDCl3, (b) acrolein(1.6)@SiO2, and (c) acrolein(3.6)@NaY.
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showed better reactivity than 5-methoxyindole with an electron-
donating group (Entries 4 and 5).

The alkylation of anisole with acrolein was also successful
in the presence of NaY under reflux at 154 �C to afford the con-
jugated adduct 6 in 29% yield after 6 h, and 66% yield after 12 h,
respectively (Table 3, Entry 1). Acrolein molecules encapsulat-
ed in the confined nanospace of NaY could survive for a long re-
action period at such high temperatures. By contrast, SiO2 only
gave a poor yield of 5% after 12 h (Entry 2). To our knowledge,
there have been no reports on direct alkylation of benzene deriv-
atives using acrolein as an electrophile.

A typical procedure is described for the reaction of indole
with acrolein: to a mixture of indole (1.0mmol) and NaY zeolite
(1.0 g) in CH2Cl2 (10mL) at room temperature (r.t.) was added
acrolein (3.0mmol) in N2 atmosphere. The resulting suspension
was stirred for 18 h at r.t. Then, acetonitrile (10mL) was added
in order to extract products sorbed in NaY zeolite, and the mix-
ture was filtrated and the solvent was removed. The crude prod-
uct was purified by preparative TLC to afford 2 in 56% yield.11

The addition of aromatics to acrolein is a 100% atom econ-

omy-type reaction without any formation of wastes or branched
alkyl isomers which are often encountered in the Lewis acid-cat-
alyzed Friedel–Crafts alkylation of aromatics with alkyl halides.
In addition, a formyl group on the side-chain can react with var-
ious nucleophiles or be transformed into other functional groups.
Application of the zeolite-catalyzed addition of acrolein to
chemical syntheses is underway.
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Table 2. Friedel–Crafts alkylations of indoles with acroleina

CHO

CH2Cl2
r.t.

N

R1

R2
N

R1

R2

NaY

3

CHO

4

Entry R1 R2 Time/h Yield/%

1 H H 18 56
2 H Me 18 45
3 Me H 12 56
4 OMe H 24 42
5 Cl H 3 72

aIndoles (1.0mmol) were reacted with acrolein (3.0mmol) in
the presence of NaY (1.0 g).

Table 3. Friedel–Crafts alkylations of anisole with acroleina

CHO

reflux, 12 h
NaY (1.0 g)

OMe
CHO

MeO
5 6

Entry Catalyst Yield/% ortho:parab

1 NaY 66 (29)c 16:84 (16:84)c

2 SiO2 5 18:82
aAnisole (10mL) was reacted with arolein (1.0mmol) in
the presence of catalysts (1.0 g) for 12 h. bDetermined by
1HNMR. cReaction time was 6 h.

Table 1. Friedel–Crafts alkylations to acrolein using solid and
liquid catalystsa

N
H

CHO

N
H

Catalyst
CH2Cl2

r.t.1

CHO

2

Entry Catalyst Time Yield/%

1 acrolein(3.0)@NaY 18 h 58
2 NaY 18 h 56
3 HY 5min 0
4 NaX 18 h 20
5 SiO2 18 h 37
6b BF3.OEt2 5min 0

aAcrolein (3.0mmol) was reacted with indole (1.0mmol).
Solid catalysts (1.0 g) were dried at 67 Pa and 673K for 4 h
and used. bBF3.OEt2 (1.0mmol).
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